Exercise 3.3.14

(a) Consider a function $f(x)$ that is even around $x=L / 2$. Show that the odd coefficients (n odd) of the Fourier cosine series of $f(x)$ on $0 \leq x \leq L$ are zero.
(b) Explain the result of part (a) by considering a Fourier cosine series of $f(x)$ on the interval $0 \leq x \leq L / 2$.

Solution

The Fourier cosine series expansion of $f(x)$, a piecewise smooth function defined on $0 \leq x \leq L$, is given by

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L},
$$

where

$$
\begin{aligned}
& A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \\
& A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

Replace x with $x+L / 2$ to translate everything to the left by $L / 2$ units.

$$
\begin{aligned}
& A_{0}=\frac{1}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) d x \\
& A_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right] d x
\end{aligned}
$$

Consider the odd coefficients by setting $n=2 k+1$.

$$
\begin{aligned}
A_{2 k+1} & =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \left[\frac{(2 k+1) \pi}{L}\left(x+\frac{L}{2}\right)\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \cos \left[\frac{(2 k+1) \pi x}{L}+\frac{(2 k+1) \pi}{2}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left[\cos \frac{(2 k+1) \pi x}{L} \cos \frac{(2 k+1) \pi}{2}-\sin \frac{(2 k+1) \pi x}{L} \sin \frac{(2 k+1) \pi}{2}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left[(0) \cos \frac{(2 k+1) \pi x}{L}-(-1)^{k} \sin \frac{(2 k+1) \pi x}{L}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)(-1)^{k+1} \sin \frac{(2 k+1) \pi x}{L} d x \\
& =\frac{2(-1)^{k+1}}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \frac{(2 k+1) \pi x}{L} d x
\end{aligned}
$$

Note that f is even, and sine is odd. The product of an even function and an odd function is odd, and the integral of an odd function over a symmetric interval is zero.

$$
A_{2 k+1}=\frac{2(-1)^{k+1}}{L}(0)=0
$$

Therefore, the odd coefficients in the Fourier cosine series expansion of $f(x)$ are zero if f is even with respect to $x=L / 2$. As an example, consider the Fourier cosine series of $f(x)$ on the interval $0 \leq x \leq L / 2$.

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{\frac{L}{2}}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{2 n \pi x}{L}
$$

This series is the L-periodic even extension of $f(x)$ to the whole line $(-\infty<x<\infty)$, so it is even with respect to $x=L / 2$. The point to note is that the series has no cosine terms with odd multiples of $\pi x / L$.

